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A_tract

Recent interest in solar electric orbit transfer vehicles (SEOTVs) has prompted a reevaluation of pulsed

magnetoplasmadyuamic (MPD) thruster systems due to their ease of power scaling and reduced test facility
requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of
these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was
assembled, including a pulse-forming network (PFN), ignitor supply, and propellant feed system. Results of cold
cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a

preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on
both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper
operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-

A1203 cathodes during activation. Comparison of the expected space charge limited cmrent with the measured

vacuum current when using the heated cathode indicate that either that a large temperature difference existed between
the heater and the cathode or that the surface work function was higher than expected.
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Nomenclature
Ph

inner cathode surface area, m2 Ra

heater surface area, m 2 Rie

space charge limited current, A Roe

discharge current, A Tic

heat conduction coefficient, W/m2C Toe

electrode lengths, cm Th
propellant mass flow rate, g/s

heater power, W

anode radius, tan

inner cathode radius, can

outer cathode radius, tan

inner cathode surface temperature, °C

outer cathode surface temperature, *C

heater temperature, *C
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V voltage,V
functionofRa/R¢

Eh heater emissivity

ei¢ inner cathode surface emissivity

The simplicity and robustness of

magnetoplasmadynamic (MPD) thrusters may make
them an attractive alternative for primary propulsion
systems on both near Earth and planetary solar electric
spacecraft. However, while demonstrated specific
impulse levels and power handling capabilities are
adequate for these missions, demonstrated steady-state
_ter efficiency and lifetime are still below acceptable
levels for these missions.l-4 A recent effort examining
the possibility of using pulsed thrusters, with a high
instantaneous power and having a duty cycle determined
by the available spacecraft power, showed that the
system level issues associated with pulsed thruster
technology did not preclude their application, and
showed that pulsed thrusters offered several benefits
from a system perspective.5 These benefits include ease
of power scaling between 10 and 40 kW, so that the
same system could be used on different spacecraft

having a broad range of power levels, the ability to
accommodate spacecraft power level changes without
changes in efficiency and specific impulse, improved
testing capability in available facilities, and a reduction
of facility impacts during thruster integration testing.
In addition to these potential benefits, pulsed MPD
thrusters have already been successfully integrated on
experimental spacecraft, and two systems have been
flown. 6-9 These flights included one on the space

shuttle during the Space Experiments with Particle
Accelerators (SEPAC) test in 1983 and a set of two

thrusters on the MS-T4 spacecraft launched by Japan in
1980. The pulse power levels for these thrusters were
2 MW and 100 kW for the shuttle and MS-T4 flights,
respectively, and both used discharge durations Over 1
ms. Another flight is planned on the Japanese Space
Flyer Unit (SFU) which will be launched in 1994.10
The MPD thruster system for the SFU flight has passed

the electromagnetic interference, thermal, and vibration
qualification tests.

Achieving the potential mission benefits requires
improvement of MPD thruster efficiency at specific

impulses below 5000 s and the demonstration of a long-
life pulsed MPD thruster. Recent work at Princeton
University, il the Los Alamos National Laboratory, 12
and the Lewis Research Center13 has shown that

significantly improved performance can be achieved over
that observed in early experiments by using hydrogen

and deuterium propellants. While not yet at a level
adequate for orbit-raising missions, the performance
improvements were obtained without any thruster
optimization. Pulsed MPD thruster lifetime has been
limited to date by cathode erosion, which, because of
the cold cathode nature of the discharges studied, ha.,;
precluded demonstration of thruster lifetimes greater
than 100 to 200 hrs. While there have been several

recent proposals to externally heat a cathode to a
temperature sufficient for thermionic emission,14,15

this approach has not yet been successfully
demonstrated in a pulsed MPD thruster. However,
preliminary studies by Andrenucci15 in which the
cathode was heated to incandescence, though not to
thermionic emission, showed significant differences
from the results obtained using simple cold cathodes.
In addition, Japanese system level tests in which a
thruster with a low work function cathode was pulsed at
rates of up to several Hertz to heat the cathode, showed

that there were cases in which the thruster discharged
without use of a high voltage ignitor. 16 This result

shows that the high voltage ignitor may be eliminated
by using a heated cathode.

This paper presents the first results of an effort to

evaluate externally heated cathodes for application to
pulsed thruster technologies. This effort included
construction of the test facility, PFN, and thruster.
Following a description of the experimental facilities
and diagnostics, a summary of results obtained to date is

presented, including cold cathode tests and preliminary
cathode heating results. Finally, a summary of
conclusions is presented.

Expcriment_ Ap_r_ratus

Test Facility and Thrusler Power System

The test facility consisted of an 0.76-m diameter by
l-m tall vacuum tank pumped by a 100 Its

turbomolecular pump and two mechanical pumps. This
facility has been successfully used for experiments
using externally heated, impregnated tungsten hollow
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cathodes.17,1g The facility base pressure with the

turbomolecular pump was approximately 2.6 x 10-4 Pa.
The tank had various viewing ports and was accessed
through the top for these experiments. The thruster was
bolted to the bell jar lid as shown schematically in Fig.
1.

The thruster was powered using an 10 stage, 2.5 kJ
pulse forming network (PFN) which delivered a - 5 ms
duration current pulse. The PFN energy storage
capability was selected to approximate the requirements
for SEOTV missions at power levels between 10 and 40
kW based on the results of a system level study. 5 The
pulse duration was chosen to permit studies of

propellant utilization efficiency. The PFN consisted of
twenty 350 V, 2.5 mF aluminum electrolytic capacitors
with 10.8 mH inductors made of multi-strand wire.
The PFN discharge was controlled using an silicon
controlled rectifier (SCR) with a 1000 V standoff

capability. No matching resistor was used in the
circuit, and no ringing has been observed in discharges
to date. While no effort was made to reduce the PFN
mass or volume, the entire PFN fit within volume of
0.5 m3 inside an instrument rack. F_or _esc !nitial

experiments, the PFN was charged manually using a
300 V, 20 A supply. A 300 ohm resistor in series with

the charging supply limited the current to the PFN to
less than 1 A, and resulted in a 3 minute long charging
time for the PFN.

A 1 kV, 2 A D.C. supply was used to ignite the
thruster. This supply was turned on to over 900 V
before triggering the gas valve and SCR. A pulsed
ignitor similar to those used on arcjets 19 was tested, but
did not have sufficient energy to trigger the PFN

discharge.

The cathode heater was designed so that the heater

power supply could be connected between one side of
the heater and the cathode as shown in Figure 2. The

100 V, 8 A supply was isolated from ground using a 1
kV isolation transformer.

The thruster voltage was measured using x 100

voltage probes connected to a differential amplifier with
unity gain. Thruster current was measured using a
Rogowski coil having a response of 4 mV/A. Both
voltage and current were recorded on a digital
oscilloscope. An optical pyrometer was used to
measure the cathode surface temperature, and

thermocouples were placed on various parts of the

thrusters and facility to ensure that no damage was done
to the hardware during cathode heating.

Propellant injection was controlled using an
automotive fuel-injector valve. These valves are

typically qualified for up to 6 x 108, 2.5 ms duration

pulses and are rated for operation at 148 °C.2° While
the "dead volume" between the valve and the thruster

must be minimized in an operational thruster in order to
maximize the propellant utilization efficiency, no effort
to do this was undertaken for these experiments. The.

preliminary experiments reported below were performed

using a fuel-injector valve with a 3 x 10.3 cm 2 orifice

area, which severely increased the length of the

propellant pulse. The valve was fed from a 313.6 cm 3
plenum. The propellant flow rate was calibrated for
both argon and nitrogen at plenum pressure of 60 psi by
closing off the plenum feed line, firing the valve 100

times for each gas, and recording the pressure drop. The
results were 0.35 g/s + 0.05 gls for argon and 0.26 g/s

+ 0.04 g/s for nitrogen. The large uncertainties reflect
errors in the pressure drop measurement.

The firing of the thruster was controlled using a set
of adjustable delay pulse generators. -As shown
schematically in Figure 2, the pulse generators triggered
the automobile fuel-injector valve and the PFN in a

preset sequence. The capability of varying the delay
between the triggers was required to permit optimization
of the propellant utilization efficiencies.

MP32_q3mlam
Two self-field MPD thrusters were tested for this

work. The first, used primarily for cold cathode testing
and facility validation, consisted of an 4 cm diameter, 5
crn long BaO-CaO-AI203 impregnated porous tungsten

cathode surrounded by a 10.2 cm diameter stainless steel
anode. As shown in Fig. 3, the cathode was hollow
with an 1.3 cm diameter hole in the center. A

molybdenum tube was brazed to one end to permit
attachment of power leads to the cathode using a clamp.
This cathode had been used previously for steady-state
hollow cathode MPD thruster tests, so it was not
known whether any of the low work function

impregnate remained in the cathode. Nevertheless, the
cathode was used to evaluate heater designs and facility

requirements for the heated cathode experiments. A
f'trst-generation internal heater was built by threading a
1.3 cm diameter boron nitride rod with 5 threads per era,

wrapping 0.051 cm diameter tantalum wire into the
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threads,and insertingit intothecathode.Theheater
powerleadextended out the molybdenum tube base. A
2.5 cm thick boron nitride plate served as thruster

backplate, propellant distributor, and cathode support.
Propellant was fed into an a 3 mm wide groove
machined into the boron nitride and entered the thruster

through an annulus at the cathode base. The fuel-
injector valve was connected to the thruster using
approximately 20 cm of 0.63 cm diameter stainless
steel tubing. A 1 can long ceramic tube was connected
between the stainless steel tube and the fuel-injector
valve to reduce heat conduction to the valve.

The second thruster, used to evaluate heated

cathodes, was built using a modified heated cathode and

support structure. As shown in Figure 4, the 3.8 cm
diameter, 6.35 on length BaO-CaO-AI203 impregnated

porous tungsten cathode in this thruster had a 2.54 cm
diameter hole extending its length, with an additional
0.7 cm diameter hole in the cathode face. The cathode

had not been used previously. The cathode heater was
similar in design to that used for tests in the cold
cathode thruster, except that it was 2..54 cm in diameter
and had 10 threads per on. The heater temperature was
measured using a platinum - 13% rhodium/platinum
thermocouple placed near the inner surface of the
cathode as shown in the figure. The cathode support

and propellant injection were also modified. The
cathode in this thruster was supported using an annular
stainless steel clamp which surrounded a flange on the
cathode base. The clamp was bolted to a large stainless
steel disc as shown in Figure 4. The boron nitride
backplate was also bolted to this stainless steel disc.
Because of the large operating temperature range and the
relatively high thermal expansion of stainless steel, care
was taken to leave room for expansion of the stainless
steel. The propellant injection was modified to include

a 0.3 art long ceramic isolator in the feed line and to
use 10 cm of 0.32 on diameter stainless steel tubing.

Extreme care was taken during the heated cathode
experiments to eliminate all possible Sources of
outgassing. This included elimination of all tape and

The cold cathode thruster was first used to validated

the design of the PFN and operation of the delay timers
and driving circuits. Data were taken to characterize the
cold cathode thruster and to establish the behavior of the

facility when the cathode was heated. Following these
tests, the heated cathode thruster was installed to

evaluate its performance.

Cold Cnthode Ex_riment_
_lt was found using the thruster shown in Figure 3

that an ignitor voltage of 800 V was required to trigger
the discharge for both argon and nitrogen propellants
with PFN charging voltages between 75 and 260 V.
PFN voltages below these values could not be used
because the ignitor discharge voltage never dropped
below 75 V, precluding opening of the SCR at lower
voltages. Typical thruster voltage and current traces for
the cold cathode discharges using argon and nitrogen
propellant are _own in Figures 5 and 6, respectively.
Both traces were clearly quasi-steady, though the slow
rise of the current resulted in a stabilization time of - 1

ms. After the peak current level was reached at ~ 1 ms,
the current dropped by - 20% over the next 2.5 ms.
The voltage trace shown for nitrogen exhibited a sudden
transition after ~ 0.6 ms, dropping by ~ 40 V to the

quasi-steady value of 81 V. Similar transitions were
occasionally observed for argon propellant, but it was

not possible to determine their cause. After the
discharge the PFN was typically still charged to
between 30 V and 75 V depending on the initial
charging voltage. These tests showed that the PFN
design was successful, though the slow rise time and

lack of ringing behavior indicated that the circuit
impedance was too high, yielding a slightly over-
damped PFN-thruster network.

The discharge current was varied between 400 A and
3200 A by varying the PFN charging voltage. The
resulting voltage - current characteristics for argon and
nitrogen at 0.35 g/s and 0.26 g/s, respectively, are
shown in Figure 7. The discharge voltage for argon

epoxy, and cleaning all thruster components (except the increased from 60 V at 400 A to 110 V at 2750 A. The
cathode) and facility surfaces with acetone and alcohol voltage using nitrogen propellant increased from - 55 V
before the final assembly. In addition, care was taken at 1000 A to -85 V a 3200 A.
not to touch tl:ie _pregnated cathode maieri',d ud_'rmg .................................
assembly. While the propellant feed system was The operation of self-field MPD thrusters has been
flushed several times with 99.999% pure argon, it was shown to correlate with the parameter J2/rh for a

not heated to ensure adequate bake-out of adsorbed broad range of operating conditions. 21 These operating
oxygen.

t
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conditions correspond to j2/ria from 6 x 108 A2-

s/kg to 2.1 x 10 i° A2-s/kg for argon, and from 3 x 109

A2-s/kg to 4 x 1010 A2-s/kg for nitrogen. Previous

work at Princeton 21 has yielded similarly shaped

voltage-current characteristics for argon propellant over

this range of J2/ria.

The cold cathode thruster was also used to assess

the heater design and facility requirements for heated
cathodes. Temperatures recorded using the optical
pyrometer and thermocouples around the thruster
mounting structure were used to estimate power losses
from the cathode. The results indicated that

approximately 350 W would be needed to achieve a
cathode surface temperature of- 1050 ° C, and showed
that the threaded boron nitride heater design could
survive the thermal cycling required for these

experiments. Thermocouple measurements of the fuel-
injector valve temperature showed that it stayed below
its 148 oC limit.

A major problem with these experiments was the
small orifice size of the fuel-injector valves that were
used. This issue had several consequences. First, it

resulted in a very gradual increase in propellant flow rate
during the pulse. Second, because extremely high
plenum pressures were required to achieve the desired
flow rates there was no truly quasi-steady propellant

. "}

pulse. As discussed by Jones, 2- the orifice area at the
thruster must be less that 1/2 the area of the valve

orifice to achieve a true quasi-steady gas pulse. It was

impossible to achieve this area ratio for the fuel-injector
valves used in this study, showing that a first step in

improving the results would be to obtain valves with
much larger orifice areas.

Heated Cathode Exreriments
The initial plan of this work was to follow the

cathode activation procedure developed during the Solar

Electric Propulsion System Program (SEPS), 23 which

is supposed to yield a cathode surface work function of
- 2.2 V. This procedure is summarized in Table I.
However, once the heating procedure was started it
became evident it would not be possible to follow the
SEPS procedure because of cathode outgassing. This
goblem is illustrated in Figure 8, which shows both
the heater temperature and bell jar pressure as a function
of time. This test was initiated immediately following
an argon purge of the bell jar, which is why the initial

pressure is 1 x 10 .3 Pa. The temperatures were

measured using the thenmx:ouple in the heater shown in
Figure 4. The cathode had been heated to 100 ° C for
four hours prior to this test, which is why there was no
pressure rise at that temperature. In fact, the pressure
decreased over the first 2500 minutes of heating to 8 x

10 -4 Pa. However, note that when the heater

temperature was increased to 400o C the pressure rose
from 9 xl0 "4 Pa to 9 x 10-3 Pa and took over 2 hours

to recover to 3 x 10-3 Pa. Care was taken to ensure

that the bell jar pressure did not exceed 9 x 10.3 Pa to

prevent any adverse effects on the cathode work

function. 24 When the temperature was increased to

500 ° C the pressure again rose, and was allowed to

recover overnight to 9 x 10.4 Pa. The pressure rose

again when the heater temperature was increased the
next day, and each time the temperature was kept
approximately constant until the bell jar pressure
decreased. This usually took between 1 and 3 hours.
While the high pressures could clearly be eliminated by

using a higher pumping speed facility, the observations
indicate that the larger cathode sizes used for heated
cathode MPD thrusters may require different activation

procedures than those used for the SEPS cathodes.

It was not possible during these experiments to
achieve a discharge using the heated cathode. This was
prevented by our apparent inability to achieve either a
sufficiently high cathode surface temperature or a low
enough work function. Direct measurement of the
cathode surface temperature was precluded at the high
heater temperatures because the window through which
the pyrometer was pointed became contaminated. While
the source of the contaminating material has not been
conclusively identified, the impregnated cathode was

strongly suspected due to the observed outgassing
behavior. Because direct measurement was impossible,

the cathode surface temperature was estimated from the
measured heater power and temperature by using
standard radiative heat transfer relations. The heater

power required to achieve the reported heater
t_mperatures is shown in Figure 9, where it is seen that
up to 500 W was required to reach a heater temperature
of 1240 °C. The temperature difference between the
heater and the inner cathode surface was calculated

from:25

5



wheretheemissivityof the heater and cathode were
varied between 0.5 and 0.7 and the heater to cathode

view factor was set to be unity because of the
effectively closed surface. The outer cathode surface

temperature was related to the inner cathode surface

temperature by: 25

TOe -'- Tic

kRo0)
2rrLk

(2)

which yielded cathode outer surface temperatures
between 900 °C and 1080 °C for a heater temperature of
1240 °C depending on the assumed emissivities. These
results show that while the cathode could have been hot

enough for adeqi_ate emission it may have been too
cool, and indicate that significant effort should be

expended in improving the heat transfer between the
heater and the inner cathode surface.

An additional test was performed in an attempt to
identify the reason for our inability to obtain a
discharge. This involved measurement of the vacuum
cun'ent as a function of the voltage applied between the
anode and cathode and comparing the values with those
expected for space charge limited current flow. At a
heater temperature of 1240 *C and an anode to cathode
voltage of 400 V, the current was 70 o.A. The
theoretical space charge limited current was calculated
from: 26

I= = 1.466 x 104 V3/2L
R,[]2 (3)

where 132is a function of the anode to cathode radius

ratio. ReL 26 provides a series solution for []2, though

for this work it was approximated by:

[]2 = 0.167 R, _ 0.067 (4)
Rc

which is accurate to within 10% for Ra/R e between 1.5

and 5. For the thruster geometry tested this formulation
yielded a current of 0.4 A at 400 V. The large difference
between the measured and calculated currents indicated

that the cathode was not emitting properly, and

conf'umed that either there was a large temperature
difference between the heater and the cathode surface or

that the work function was higher than expected.

Samma_

An experimental effort was initiated to evaluate
externally heated, low work function cathodes for pulsed
MPD thrusters. The experimental apparatus was
designed and built to approximate the sizes and
discharge energies anticipated for solar electric near-
Earth and planetary missions. The facility included a
puised-forming network which delivered 5 ms duration
quasi-steady current pulses and used automobile fuel-

injector valves to control the propellant flow. A cold
cathode thruster was successfully tested using both
argon and nitrogen propellants at current levels ranging
from 400 to 3250 A and peak discharge power levels of
up to 300 kW. Attempts to operate a thruster using a
heated BaO-CaO-AI:O3 impregnated porous tungsten

cathode sized for the high current levels used in MPD
thrusters have so far been unsuccessful. Testing to date
has revealed that a large amount of gas was evolved
from the cathode during activation. Heat transfer
estimates show that the temperature difference between
the heater and the cathode may be as high as 340 *C,

showing the importance of good thermal contact
between the heater and the cathode. Comparison of the

theoretical space charge limited current for the tested
geometry and the measured vacuum current confknn that

either there was a large temperature drop between the
cathode heater and the cathode surface or that the cathode

work function was significantly higher than the
expected value.
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Table I - Activation procedure used for SEPS cathodes. 23

Duration, hrs Temperature, °C
3 50O

0.5 no heat

1 1050

0.5 no heat

| I

,onGa e 
Stainless Steell 1 _ Windows

! i

1
To Pumping System

Figure 1 - Heated cathode pulsed MPD thruster test facility schematic
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circuit

1 kV
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_1 SCR firing
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} MPD

SCR
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Cathode

heater

supply

Figure 2 - Schematic of delay timers and power supplies used in pulsed MPD thruster tests.

/

Propcllamt inlet

Boron ,,itridc l:_:lq_h_t¢

Stainless steel

Figure 3 - Schematic of MPD thruster used for cold cathode tests and facility validation.
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Figure 4 - Schematic of heated cathode pulsed MPD thruster.

voltage

50 V/div

CUrl'eat

1250 AJdiv
V(O)
J(0)

time, I ms/div

Figure 5 - Current and voltage maces for argon using the cold cathode thruster.
Current level of ~ 1840 A, voltage of - 109 V.
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Figure 6 - Typical current and voltage traces for nitrogen propellant.
Discharge current of- 2850 A, voltage of- 80 V.
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Figure 7 - Voltage - current characteristics for the cold cathode thruster operating
on 0.35 g/s argon and 0.26 g/s of nitrogen.
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